专利摘要:
加圧リアクター中で石膏を焼成する方法であり、石膏を、加圧リアクター中に燃焼ガスと空気を加圧リアクターに注入して石膏の流動床を作り、加圧リアクター中の石膏の流動床を充分に加熱して、焼成半水和物を形成することからなる。
公开号:JP2011512317A
申请号:JP2010547709
申请日:2009-02-17
公开日:2011-04-21
发明作者:リウ,キンシア;ルアン,ウェンキ
申请人:ユナイテッド・ステイツ・ジプサム・カンパニー;
IPC主号:C04B11-036
专利说明:

[0001] 本出願は、合衆国法典第35巻(米国特許法)119条(E)により、2008年2月19日出願の米国仮出願No.61/029,725、および2008年10月23日出願の米国仮出願No.61/107,901を優先権としている。]
[0002] 硫酸カルシウム二水和物(しばしば、天然に存在する形体の石膏あるいはランドプラスターとして、合成的に誘導される形体の合成石膏として、あるいは化学式CaSO4・2H2Oとして知られている)を焼成して、主としてα−タイプ硫酸カルシウム半水和物(CaSO4・1/2H2O[α−タイプ])とする改善された技術および設備を開示する。]
背景技術

[0003] 石膏および硫酸カルシウムベースの組成物および化合物は、建設業界を含め広く種々の産業で使用されている。硫酸カルシウム二水和物は、採掘することができる天然に存在するものである。]
[0004] 硫酸カルシウム二水和物のさらなる出所源は、石炭燃焼の発電所の排ガス脱硫から発生する合成石膏(FGD石膏)、およびリサイクル壁ボードのようなリサイクル石膏、キャストあるいはモールドからリサイクルされる石膏などである。]
[0005] 建設材料として有用な石膏とするために、石膏は、焼成または加熱されて一部脱水し硫酸カルシウム半水和物のα−とβ−形となる。生石膏の硫酸カルシウム半水和物への脱水または焼成は、下記の式で表される。]
[0006] ]
[0007] 焼成は、硫酸カルシウム二水和物が、半水和物、可溶性無水物、および/または不溶性無水物に変換されるプロセスである。石膏の焼成には、多くの種々の技術が使用されている。例えば、焼成は、高温でのフラッシュ乾燥、大きなケトル中でのクッキング、炉あるいはロータリーキルンでの加熱、スチームの使用、あるいは水懸濁液中のクッキング、で行われる。]
[0008] これら種々の技術は、広い範囲の組成物および性状をもつ硫酸カルシウム製品となるが、一般に、α−半水和物タイプとβ−半水和物タイプの2つのタイプの半水和物が形成される。]
[0009] 上記した焼成プロセスの逆方向で、半水和物は飽和するまで水に溶解され、可溶性半水和物は発熱を伴って溶解性の低い二水和物に戻り、溶液から析出し、次の反応を促進していく。]
[0010] ]
[0011] 二水和物の生成量が増えると、石膏は硬化する。石膏の硬化は、発生する熱を測定することで追跡でき、スラリー温度が徐々に上昇していく。]
[0012] 半水和物の焼成の熱効率を改善する方法が検討されてきたが、代表的には、焼成温度を下げることに作用する潮解性の塩CaCl2などの脱水剤を使用することに依っている。しかしながら、添加物としてCaCl2を使用するのは、連続プロセスよりバッチプロセスに向いている。さらに、塩の添加は、プラスチックフローなど壁ボード性状や石膏コアへの紙の接着に良くない影響を及ぼすことがある。]
[0013] α−とβ−半水和物は、微細に粉砕した粉末の半水和物を流動性のスラリーとするに必要な水の量で互いに区別できる。
α−硫酸カルシウム半水和物は、α−半水和物がプラスター100g当たり約50mL以下の水が必要であるとし、β−硫酸カルシウム半水和物は、β−半水和物がプラスター100g当たり70mL以上の水が必要であるとしている。この水の量は、“水要求量”として知られている。高水要求量は、水/スタッコ比(W/S)として反映され、ボードの乾燥プロセスで過剰の水を除くのに多くのエネルギーが必要であることから、壁ボードの製造観点で非効率的である。エネルギーの大部分は、燃料コストの上昇にある。
従来のβ−半水和物は、より多孔性で、W/S比が0.7〜0.8の範囲にあり、他方、α−半水和物ではW/S比が0.32〜0.45の範囲にある。]
[0014] 半水和物のα−とβ−形は、結晶形および密度でも異なっている。α−半水和物は、B−ベース形で、典型的にバッチシステムで作られるが、β−半水和物は、連続システムで作られる。後者の利点にも拘らず、水要求量がより低いために、α−半水和物は、β−半水和物よりも好まれている。しかしながら、最近の焼成技術では、α−半水和物を含む硫酸カルシウム製品を生産するに比較的非効率である。その結果、従来の石膏壁ボード生産者は、大気圧下でケトルまたはフラッシュ焼成して生産されたβ−半水和物を使用している。]
[0015] 壁ボードの製造にα−半水和物を使用することは、エネルギーと生産コストの大幅節減となる。W/S比が、α−半水和物では遥かに低いので、ボードの乾燥に使用する燃料(代表的に天然ガス)が少なくなり、壁ボードの生産ラインの速度が増し、生産能力の増加となる。燃焼に関係した汚染ガスの排出も少なくなる。]
発明が解決しようとする課題

[0016] 市販壁ボード生産者のもつ上記した生産上の関心は、連続プロセスによりα−半水和物が得られる加圧下での石膏焼成の方法および装置を提供することに向けられている。]
課題を解決するための手段

[0017] 加圧リアクターは、熱源、好ましくは熱交換器、および加熱ガスと空気を注入して流動床を作る装置を有して提供される。採掘された石膏あるいは合成石膏は、リアクター中で焼成するために連続方式でリアクターに導入される。このようにして、W/S比が0.45〜0.55の範囲にある焼成されたα−半水和物が生産される。好ましい実施形態で、第2熱交換器が備えられ、内部に加熱オーガ装置を備えたリアクターである。]
[0018] 連続計量システムは、石膏を連続プロセスでリアクターに導入し、かつリアクターの圧力を維持するのに使用される。この方法は、熱源からの加熱空気の一部を熱交換器に使用し、また加熱ガスを流動床リアクターに供給するという特色をもつ。]
[0019] 特に、石膏の焼成方法が提供される。石膏は、加圧リアクターに導入される。燃焼ガスと空気を加圧リアクターに注入されて、石膏の流動床を作る。石膏は、リアクター中で充分に加熱されて、焼成された半水和物を形成する。]
[0020] 別の実施形態で、石膏の連続焼成装置が提供され、ホッパー入口とホッパー出口を持った少なくとも1つの石膏ホッパーを有し、ホッパー出口は二連バルブフィーダーと連通し、そして、加圧リアクターが二連バルブフィーダーと連通している。]
[0021] またさらなる実施形態で、石膏の焼成方法が提供され、これは、石膏を加圧リアクターに導入し、石膏を加熱して低水要求値の半水和物である焼成された半水和物を形成するステップを有している。焼成された半水和物は、水/スタッコ比が概略0.45〜0.55の範囲にある。]
図面の簡単な説明

[0022] 石膏を焼成する本発明の方法を行う装置の第1実施形態の概要図である。
石膏を焼成する本発明の方法を行う装置の別の実施形態の概要図である。
図2の二連スクリュー対向回転オーガの上から見た部分断面図である。
種々のスタッコの水要求量を比較する棒グラフである。
種々のスタッコの結合水を比較する棒グラフである。
焼成時間とリアクター温度の関係を示すグラフである。
焼成圧力とリアクター温度の間の相関性を示すグラフである。
(a)〜(f)は、本プロセスの前後における結晶構造の走査電子顕微鏡(SEM)写真である。] 図2
[0023] 上記の図面は、大きさを示していないことを理解されるべきである。開示した方法および装置を通常の知識を有する人が理解する上で必要でない詳細、あるいは見てわからないその他の詳細は、ここでは省いている。勿論、この開示は、ここに説明した特別の実施形態に制限されものでないことは理解されるべきである。]
実施例

[0024] 図1を参照すると、石膏を焼成するシステムを符号10としている。システム10の利点は、従来から行われてきたバッチプロセスとは異なって、低水要求量の半水和物に焼成する連続プロセスであることにある。このプロセスでは、α−半水和物結晶の生成を増すことにより低水要求量が、好ましく達成されている。システム10は、本質的にここに描かれた装置であり、以下の方法またはプロセスを行うに使用されることが理解できるであろう。] 図1
[0025] システム10では、石膏が、入口またはフィード11を通してホッパー12に供給される。ホッパー12は、加圧ホッパーであってよい。入口11は、コンベアー、あるいは当業熟練者に知られた積載システムなど如何なるタイプであってもよい。石膏は、典型的には粉砕され、粒子形状で供給される。]
[0026] 開示された装置および技術は、塩化カルシウム(CaCl2)などの脱水剤への依存を少なくしている。しかしながら、潮解性または吸湿性塩である脱水剤を使用することもできる。従って、脱水剤入口13は、脱水剤ホッパー14に通じて設けられる。ホッパー12、14からの出口15、16はそれぞれ、種々の方法で結合されるが、図1ではその一つのみを示している。図示しているように、出口15、16はそれぞれ、コントロールエレメント17,18を有して、好ましくはロータリーロックであるロック19などの連続計量装置への材料の流れをコントロールしている。空気加圧ライン20は、L−フィーダー21に圧力を供給して、L−フィーダー21は、加圧リアクター27へ加圧下でフィードしている。] 図1
[0027] さらに追加のコントロールバルブ22が、空気加圧ライン20、あるいは空気加圧ライン20とL−フィーダーの間、あるいはL−フィーダー21と入口の間に配置することができる。
図1は、当業熟練者がわかるようにシステム10に必要かもしれないコントロールエレメントを、全てでなくいくつかのみを示している。] 図1
[0028] ロック19とL−フィーダー21の代わりに、2連の連続計量装置あるいは2連ロック垂直フィーダー(図2に最もよく見られ、以下に記載する)を用いることもできる。2連ロック垂直フィーダーは、加圧空気の供給20と異なって、石膏フィードの長い垂直カラムを持ち、フィードカラムを加圧している。] 図2
[0029] 2つのロータリーバルブあるいはロックが使用され、下のバルブはリアクター27の入口近くに、そして、上のバルブは石膏ホッパー12の近くにする。このタイプの配置は、当業熟練者には公知である。]
[0030] キルンタイプのリアクター容器は、石膏の焼成用に知られているが、本発明の容器27の利点は、加圧されるということにある。好ましい実施形態で、容器27は、14.7psia(1気圧(ゲージ))から55.3psia(3.8気圧(ゲージ))を維持するように意図されている。]
[0031] リアクター容器27は、石膏材料が頂部29と底部31の間で流動床となるのが好ましい。石膏の焼成は、この流動床で行われる。]
[0032] リアクター容器27の底部31には、入口32があり、1つ以上の流体を受けている。この流体は、例えば、(1)空気入口33からブロワー34に入り、その出口35およびコントロールバルブ36がリアクター入口32と連通して供給される加圧空気、(2)蒸気入口37から、コントロールバルブ38およびその蒸気出口55がリアクター入口32に連通して供給される蒸気、そして、(3)燃料供給路42から燃料を受け、空気入口43とブロワー44からの加圧空気を用いて燃焼するバーナー41からの燃焼ガス、である。]
[0033] 燃料ライン42と空気ライン43のコントロールエレメントは、それぞれ符号45、46で示している。使用される燃料のタイプは重要ではないが、天然ガスまたは他の軽質炭化水素ガス(例えば、プロパン、ブタンなど)から油または石炭と、場所と入手の観点から変わる。蒸気は、リアクター27中の水分コントロールと、加熱の目的で加えられる。リアクター27中に同時にあるいは代って水が注入されることがある。]
[0034] バーナー41の出口47は、符号48、49で示した出口に向けられ、または分割される。出口49は、リアクター底部入口32に向けられ、追加のコントロールエレメント51を経るようにしてもよい。]
[0035] バーナー出力の別の部分を説明すると、出口48は、熱交換器52に向い、流動床を加熱するに使用される。コントロールエレメント53が設けられ、好ましくは、バーナー41からの加熱燃焼ガス形体で熱の流れをコントロールする。]
[0036] 熱交換器52は、加圧リアクター容器27の中間部54、および底部入口32からの上昇流で作られた流動床の真中に配置されるのが好ましい。出口35からの加圧空気、出口55からの蒸気、およびライン56からの燃焼ガスのいずれか1つ以上を用いてリアクター27内に加圧上昇流ができ、入口21からの石膏と一緒になってリアクター27内に流動床を形成する。]
[0037] 熱交換器52の使用は、流動床を間接的に加熱する点で好ましいが、直接または間接タイプのその他熱源を用いて、流動床の温度を以下に検討する所望温度範囲に高めることも考えられる。例えば、燃焼ガスおよび/または蒸気は,流動床を直接に加熱することができる。]
[0038] 穿孔された一般に平面の空気ディストリビュータが、符号57で示しており、これは、容器27の内部で上昇流を均一にし、流動床の形成および保持するのを容易にしている。]
[0039] 好ましい実施形態で、空気ディストリビュータ57は、2枚の穿孔された平板59、61の間に挟まれて任意にファイバーマット62を備えている。空気ディストリビュータ57の詳細は、この開示に直接関係していないので、詳細は説明しない。当業熟練者であれば、焼成リアクターおよび流動床リアクター中で使用される種々の空気ディストリビュータを使用して実施できる。例えば、参考に示す米国特許No.7,175,426を参照されたい。ファイバーマット62を使用するとき、好ましいマットは、熱に耐える能力の点で選ばれるシリカファイバーである。]
[0040] 空気ディストリビュータ57は、示しているように容器27に一様に拡げられ、あるいはそれぞれ穿孔された板の間に挟まれたマットであるパッドを複数枚用いてもよい。]
[0041] 好ましい実施形態で、熱交換器52は、1つの縦管63と2つ以上の横管64を有して構成されて、リアクター容器27内部の上昇流路の中に置かれる。熱交換器52からの出口は、排気管65と連通している。]
[0042] このようにして、計量された石膏が、上部入口28からリアクター容器27に入り、下方に落ち、図面に示すような空気ディストリビュータ57を通り抜けた上昇加熱流と一緒になる。熱は、熱交換器52の様々の配管63、64を通して供給される。]
[0043] 上に議論したように、熱は、バーナー41からライン48で供給されるのが好ましい。バーナー41の出口47の温度は、典型的に約1482から約1760℃(約2700から約3200°F)である。熱交換器排気口65を通る熱交換器排出ガスの温度は、約232から約316℃(約450から約600°F)である。]
[0044] リアクター容器27内の温度は、約121から約177℃(約250から約350°F)、より好ましくは約138から約149℃(約280から約300°F)である。]
[0045] 蒸気は、好ましい水分源であり、蒸気導入路37、55を通って供給される。しかしながら、水を、勿論コントロールエレメント67を有する水導入路66を経てリアクター容器に加えてもよい。]
[0046] 水導入路66は、当業熟練者にとって明かであるように、アトマイザー(図示してない)に連結すべきである。容器27内の全圧力は、約14.7psiaから55.3psia(約1.0から約3.8気圧)(ゲージ)である。]
[0047] リアクター容器27の頂部29は、典型的に多くの垂直に並んだバッグ69でなるダストコレクター68を有するのが好ましい。ダストコレクター68は、焼成石膏ダストの微粒子を捕捉し、リアクター容器27の中央部分54に戻している。]
[0048] ケトルの排出流またはリアクター出口は、符号70で示され、コントロールバルブ71を有しており、排出ガスをダストコレクター68でろ過して放出している。]
[0049] 焼成石膏製品は、製品出口72を通ってスタンドパイプ73に出て行く。製品出口72は、流動床の上限で取り出せるように、熱交換器52より上で、かつダストコレクター68より下に位置するのが好ましい。さらに、出口72は、典型的にはそれ自身のコントロールエレメント(図示していない)を有している。]
[0050] 製品が適切に乾燥しているようにするため、スタンドパイプ73は、第2熱交換器74中を通っている。第2熱交換器74は、第2の蒸気あるいは加熱媒体入口75から、燃焼ガス、排気ガス、あるいは油などの蒸気または加熱媒体が導入される。第2熱交換器74は、石膏製品と一緒に流れる水蒸気が凝縮するのを防いでいる。]
[0051] 蒸気あるいは加熱媒体の出口は符号76で、コントロールエレメントは符号77で示している。乾いた焼成された半水和物製品が、出口78、およびロック19と同様のロック80の連続計量装置を通ってスクリューコンベアー79に出ていく。スクリューコンベアー79は、ライン81を通して製品を排出し、貯蔵コンテナー、容器、列車車両、トラック荷台、あるいは貯蔵エリア82に送り出す。スクリューコンベアーのモータは、符号83で示している。明らかに、他のタイプのコンベアーシステムも使用することができ、この開示を読んだ後で当業熟練者には明らかであろう。
追加の連続計量装置84を、スタンドパイプ73の入口に設けて、リアクター27内の圧力シールとするのが好ましい。]
[0052] 図2および3を参照すると、本システムの別の実施形態を、符号90としている。システム10と共有した部分は、同一の符号を付している。
システム90とシステム10の1つの大きな相違は、単一のロック19とL−フィーダー21の代わりに、2連のロック92、94の配置を採用して、ホッパー12からの石膏の連続の流れを実現し、かつ符号96の加圧流動リアクター中で圧力を維持している点にある。好ましい実施形態で、下のロック94は、直接、重力によって、リアクター96にフィードしている。] 図2
[0053] 加圧空気が、ブロワー34によりコントロールバルブ36を通ってリアクター96の穿孔されたハウジング98に入り、リアクター中の石膏床を流動化させている。]
[0054] 加熱ガス、油あるいは蒸気が、少なくとも1つ、好ましくは2つの中空のオーガシャフト102,104の端部にある入口100に連続して注入される。オーガシャフト102,104は、互いに噛み合う螺旋形状の中空オーガブレード106、108を有しており、速度調整可能で、セルフクリーニング型二連スクリュー対向回転オーガ110(図3で最もよく見える)の一部となって、リアクター96の内部に設置され、石膏の流動床を焼成する。] 図3
[0055] オーガシャフト102,104は、互いに間隔を置いて、水平な並列に配置されるのが好ましいが、この中空オーガシャフト102,104は、リアクター96内で互いに異なるように配置されてもよいと考えられる。]
[0056] シャフト102、104がバーナー41によって供給されるボイラーなどの熱交換器112と連通しているので、システム10の場合のように、空気または油などの加熱流体は、シャフト102、104の入口100に供給される。]
[0057] 加熱流体は、それぞれのシャフト102、104内、およびそのオーガブレード106、108を循環し、加圧リアクター96内の石膏を加熱する。好ましい実施形態で、加熱流体は、最終的にそれぞれのシャフト102、104の出口114から出て、バーナー41に再循環される。]
[0058] 動力源116、好ましくは可変速度モータが、公知のようにシャフト102、104の少なくとも一方、好ましくは両方に連結されてシャフトを回転させ、オーガブレード106、108を回転させる。オーガブレードが螺旋形状であることから、リアクター96中の石膏は、リアクターの一端から、リアクター出口120と隣合う反対側端へ移動していく。好ましい実施形態で、オーガブレード106、108は、互いに噛み合わされ、シャフト102、104が回転すると共に、互いのブレードに残る石膏は、隣接したブレードの近接して回転する作用によって除かれていく。]
[0059] 図3から見られるように、ブレード106、108は、全径方向で互いに重なり合っている。このリアクター96の別の態様では、シャフト102、104の回転速度は、適用に合わせて変えることができる。] 図3
[0060] 異なる石膏粒子サイズおよび/または滞留時間が必要なときには、異なる回転速度のシャフトが必要となる。このように、速度調整可能な二連スクリュー対向回転オーガ110は、石膏の焼成流動床を、リアクター入口118からリアクター/製品出口120に連続的に移動させていく。]
[0061] リアクター96中の所望の蒸気圧および相対湿度は、焼成によって発生する蒸気、および入口37で燃焼ガスと空気と共に注入される蒸気で維持される。蒸気は、またリアクター96中の流動床の温度を上げるためにも使用できる。蒸気を燃焼ガスと一緒にすると、リアクター中での凝縮が避けられる。]
[0062] 穿孔されたハウジング98は、単一壁で示しているが、リアクター96は、石膏の焼成流動床のさらなる加熱ができるように二重壁の蒸気ジャケット113を持つようにしてもよい。リアクターハウジング98は、リアクター96内部で生成する凝縮水を放出する凝縮水放出バルブ122を有するのが好ましい。]
[0063] さらに、安全弁124が設けられて、リアクター中の圧力が、予め定めたレベルを超えた場合に放出することができる。所望により、同様のバルブは、システム10でも考えられる。]
[0064] 上で検討したユニット19、92および94と同様な連続計量装置126は、リアクター圧力を維持することを支援し、焼成石膏をリアクター96から第2熱交換器74に連続的にフィードする。]
[0065] 好ましい実施形態で、第2熱交換器74が、リアクター96を出る焼成石膏の温度および水分レベルを維持するに使用される。第2熱交換器74を出た後で、第2連続計量装置128は、第2熱交換器74の圧力を維持することを支援し、焼成石膏を貯蔵エリア82に連続的にフィードする。]
[0066] 同様に、システム10の第2熱交換器74に、複数の計量装置(126、128)を使用することが考えられる。焼成石膏は、第2熱交換器74を出て、粉砕ミル132へ送られ、焼成半水和物を加熱と同時に粉砕することができる。粉砕ミルは、燃焼ガスによって加熱される。当業者に公知であるように、ボールあるいはチューブミルなどが考えられる。]
[0067] 図4〜7を参照すると、図4の棒グラフは、様々な場所からの石膏原材料について、従来の焼成プロセスおよび加圧焼成を用いた実験室装置での焼成石膏製品の分析結果を示している。] 図4 図5 図6 図7
[0068] 図4と5で、サウサード(Southard)C−ベースとB−ベースの値は、従来の焼成による結果であり、比較的多くのエネルギーが必要である。理想的には、加圧焼成は、焼成されたB−ベース半水和物の値近くであるべきである。
アレゲニィ(Allegheny)とキルン(Killen)の値は、下に述べるケミニア・ラボラトリー・テクニーク(Chemineer laboratory technique)を用いた加圧焼成の結果である。アリキッパ(Aliquippa)およびサウサード(Southard)CKSの値は、ケトルで生産された従来のβ−半水和物スタッコである。] 図4
[0069] 種々のタイプのスタッコについて、手で行ったコンシステンシー測定での水要求量(100gのスタッコに必要な水)の結果であり、約36ccから75ccで変動している。結果は、従来のケトル焼成のβ−半水和物と比較して、加圧焼成を使用したときの水要求量が低いことが示されている。]
[0070] 図5は、結合水のパーセンと(%)が、スタッコのタイプや焼成のタイプに拘わらず、約5.8%から約7.2%にあることを示している。この範囲は、標準の半水和物を生産するに要求されるものである。図6は、リアクター温度が上がると、焼成時間が減ることを示している。図7は、リアクター圧力が、リアクター温度の上昇に伴い高くなることを示している。] 図5 図6 図7
[0071] ]
[0072] 表1を参照すると、燃料ガス脱硫(FGD)石膏および天然ロックを用いた一連のバッチ焼成を、実験室サイズのケミニア加圧蒸気リアクター〔ケミニア社(Chemineer Inc)、オハイオ州デイトン(Dayton)〕で行った。
焼成条件は、温度、圧力、湿度、焼成時間、初期の遊離水、攪拌および粉砕を記録した。
焼成時に、結晶変形剤とシーズ(種)を用いた。生成されたスタッコの性状を、粒子サイズ、結合水、結晶構造、水要求量(手によるコンシステンシー、スランプサイズ)および硬化時間について、USG社サウサード(Southard)工場で生産されたB−ベーススタッコと比較した。]
[0073] 図8の(a)〜(f)を参照して、ケミニア(Chemineer)ユニット実験室テストは、生石膏材を用い、水を加えて、遊離または表面水分をFGD材の遊離水分に近い7.5から13%に維持して行った。
結晶変形剤としてのコハク酸は、水に溶解し、結晶のシードとしてのC−ベーススタッコは、焼成する前に生石膏と一緒にして加えた。粉砕時にステンレス鋼のボールと攪拌を適用し、粒子が分離するのを防いだ。
焼成した後、スタッコは、大気圧下のケミニアユニット中で乾燥した。生成したスタッコを、50メッシュ篩を通し、結合水を測定し、結晶構造を走査電子顕微鏡(SEM)で確認した。] 図8
[0074] 適切な焼成条件下では、天然石膏とFGD合成石膏の両方が、非スラリープロセスを用いてα−半水和物結晶構造の低水要求量スタッコを生産した。前後の結晶特性を、図8(a)〜(f)に描いている。] 図8
[0075] 図8(a)はB−ベーススタッコの結晶構造である。図8(b)〜(c)はフィード材料を見ており、図8(d)〜(f)は焼成された結晶を見ていて、α−半水和物結晶の所望の塊状構造を示している。] 図8
[0076] 石膏を焼成する例示方法は、1)石膏を加圧リアクターの上部に導入し、2)加熱空気、蒸気、およびバーナーからの燃焼ガスの一部を加圧リアクターの底部に入れて、リアクター内に石膏の流動床を作る、3)石膏の流動床の中を横切る熱交換器とバーナーからの燃焼ガスの残りの部分を用いて加圧リアクターを約121から約149℃(約250から約300°F)の温度に加熱し、4)加圧リアクター内の蒸気圧を1.01×105から3.85×105Pa(1.0から3.8気圧)に保持し、5)加圧リアクター内の温度を約121から約149℃(250から300°F)に保持する、ことである。]
[0077] 上記した装置および技術を用いて、α−タイプ半水和物が高い割合で、β−半水和物が低い割合でなる改善された硫酸カルシウム製品とすることができる。
要するに、開示した装置を用い、開示したパラメーターと方法を採用して、低水要求量で、改善された特性を備えた硫酸カルシウム製品となる。更に、脱水剤を使用は、任意であり、必ずしも必要でない。]
[0078] さらに、石膏材料の平均粒子サイズは、流動化パラメーターとして重大でなく、種々の粒子サイズに合わせて変更できる。
一般に、50μmから1mmの範囲の平均粒子サイズを持つ石膏材料も使用できる。そして得られた半水和物製品は、所望の最終生産物または適用により後で粉砕できる。]
[0079] バーナー41からの燃焼ガスを蒸気と一緒にして使用することは、入口32での流体を充分高い温度にして、リアクター容器27内または空気ディストリビュータ57近くでの凝縮を防ぐことができる。]
[0080] このように、導管56からの燃焼ガス、導管35からの加圧空気および導管55からの蒸気を結合した入口32で一緒にすることの1つの利点は、蒸気での水分上昇がリアクター27内で起きる凝縮の悪影響を及ぼさないことにある。底部入口32に水を加えることもできるが凝縮する危険性がある故に、蒸気が好ましい。]
[0081] ある実施形態だけが述べてきたが、別の形態および修正は、当業熟練者にとって上記の記述から明かであろう。これら別の形態および修正は、この開示の範囲および請求の範囲と等価物である。]
权利要求:

請求項1
石膏を加圧リアクターに導入する、燃焼ガスと空気を加圧リアクターに注入して、前記リアクター中に石膏の流動床を作る、前記リアクター中で前記石膏流動床を加熱して、前記石膏が充分焼成されて焼成半水和物を形成する、の段階を有することを特徴とする石膏の焼成方法。
請求項2
前記焼成半水和物は、スタッコに対する水の比が概略0.45〜0.55の範囲であることを特徴とする請求項1に記載の石膏の焼成方法。
請求項3
さらに、前記石膏を、連続計量装置を通して前記加圧リアクターに連続フィードすることを特徴とする請求項1に記載の石膏の焼成方法。
請求項4
さらに、燃料と空気をバーナーで燃焼して燃焼ガスを生成し、この燃焼ガスの一部を前記加圧リアクターに送って流動床を作り、この燃焼ガスの残部を熱交換器に送って流動床の加熱に使用する、ことを特徴とする請求項1に記載の石膏の焼成方法。
請求項5
さらに、水と水蒸気の少なくとも一方を、前記燃焼ガスと共に前記加圧リアクターに注入することを特徴とする請求項1に記載の石膏の焼成方法。
請求項6
前記空気は、加圧されて加圧リアクターに入れられることを特徴とする請求項4に記載の石膏の焼成方法。
請求項7
さらに、前記燃焼ガスの残部を受ける空気ディストリビューターを持つことを特徴とする請求項4に記載の石膏の焼成方法。
請求項8
前記加熱は、熱交換器で行なわれ、さらに、焼成石膏を前記加圧リアクターから抜き出し、この焼成石膏を、第2熱交換器で加熱する、ことを特徴とする請求項1に記載の石膏の焼成方法。
請求項9
前記焼成石膏を、流動床の上限とダストコレクターの下に隣接して設けられた前記加圧リアクターの出口を通して、前記加圧リアクターから抜き出すことを特徴とする請求項8に記載の石膏の焼成方法。
請求項10
前記第2の熱交換器から出た焼成石膏を、排出バルブを通してスクリューコンベアに送ることを特徴とする請求項8に記載の石膏の焼成方法。
請求項11
石膏を加圧リアクターに連続的に導入し、前記石膏を加熱して、スタッコに対する水の比が概略0.45〜0.55の範囲で、低水要求量の焼成半水和物を形成することを特徴とする石膏の焼成方法。
請求項12
前記加圧リアクターは、連続加熱し、生成物を前記リアクターの入口から出口に移動することを特徴とする請求項11に記載の石膏の焼成方法。
請求項13
さらに、乾燥された焼成半水和物を第2熱交換器から排出バルブを通して、焼成半水和物を加熱と粉砕を同時に行う加熱ミルに移動することを特徴とする請求項11に記載の石膏の焼成方法。
請求項14
ホッパー入口とホッパー出口を持つ少なくとも1つの石膏ホッパーと、前記ホッパー出口と連結した連続計量装置と、前記連続計量装置と連結した加圧リアクター、を含んで構成されることを特徴とする石膏の連続焼成装置
請求項15
前記加圧リアクターは、ダストコレクターと空気ディストリビュータの少なくとも1つを有することを特徴とする請求項14に記載の石膏の連続焼成装置
請求項16
前記加圧リアクターは、中空シャフトと中空ブレードを有する速度調整可能な二連対向回転オーガが、前記加圧リアクターの内部に配置されて、前記加圧リアクターの入口から前記加圧リアクターの出口に流動化した石膏を連続的に加熱し、移動することを特徴とする請求項14に記載の石膏の連続焼成装置
請求項17
スタンドパイプが、前記スタンドパイプと貯蔵エリアの間に設けられたスクリュウーコンベアと連通していることを特徴とする請求項14に記載の石膏の連続焼成装置
請求項18
バルブフィーダーが、焼成半水和物を乾燥し粉砕する加熱ミルと連通していることを特徴とする請求項16に記載の石膏の連続焼成装置
請求項19
前記加熱ミルは、加熱焼成ガスで加熱されることを特徴とする請求項18に記載の石膏の連続焼成装置
类似技术:
公开号 | 公开日 | 专利标题
KR101695746B1|2017-01-12|이산화탄소를 소비하는 물질에 대한 경화 시스템 및 이의 사용 방법
US7387662B2|2008-06-17|Method and device for separating gaseous pollutants from hot process gases by absorption and a mixer for moistening particulate dust
US9919977B2|2018-03-20|Synthetic gypsum fertilizer product and method of making
JP5395433B2|2014-01-22|耐水性が改善されたファイバーボード
ES2323747T3|2009-07-24|Composiciones basadas en cemento mejoradas.
US5954497A|1999-09-21|Method for multi-stage calcining of gypsum to produce an anhydrite product
US4247518A|1981-01-27|Apparatus for the thermal conversion of gypsum
US3925024A|1975-12-09|Grid burner system
EP1575871B1|2012-08-15|Process and plant for producing metal oxide from metal compounds
JP4780888B2|2011-09-28|Additive for enhancing hydration of calcined gypsum
JP2017527516A|2017-09-21|Carbonate-capable calcium silicate composition and method for producing the same
CN102459531B|2014-06-04|用于煤提质的装置及使用该装置的方法
AT396225B|1993-07-26|Verfahren zur erzeugung von calciumsulfat-alphahalbhydrat aus feinteiligem calciumsulfat und dessen verwendung
CN103459347B|2015-08-19|基于煅烧黏土的熟料取代物
JP2006511419A|2006-04-06|微細粒状化固形物の熱処理方法およびプラント
DE3819652C2|1990-07-05|
ES2325365T3|2009-09-02|Dispositivo de secado y/o coccion de yeso.
TW201708157A|2017-03-01|來自矽酸鈣碳化的複合材料與結合元件及其方法
EP2061731B1|2020-04-15|Calcium sulfate hemihydrate treatment process
WO1993004008A1|1993-03-04|Verfahren und vorrichtung zur herstellung von faserverstärkten gipsplatten
CN100429171C|2008-10-29|制造水泥的方法和装置
JP5384351B2|2014-01-08|超低コンシステンシーα−およびβ−ブレンド化粧しっくいの製法
US3236509A|1966-02-22|Process and apparatus for continuous calcining of powdered gypsum rock
CA2357280A1|2002-03-15|Procedure and also apparatus for the cleaning of flue gases containing sulfur dioxide
TW201502104A|2015-01-16|透水複合材料與其生產及使用方法
同族专利:
公开号 | 公开日
AU2009215632A1|2009-08-27|
CO6251305A2|2011-02-21|
US7815889B2|2010-10-19|
AR070616A1|2010-04-21|
EP2254837A4|2012-01-25|
NZ587328A|2012-03-30|
JP5439643B2|2014-03-12|
US20090257946A1|2009-10-15|
UA103890C2|2013-12-10|
CA2715793A1|2009-08-27|
TW200942502A|2009-10-16|
CN101952203B|2013-08-14|
BRPI0905983A2|2015-06-30|
CL2009000383A1|2010-09-10|
EP2254837A1|2010-12-01|
MX2010009047A|2010-09-10|
CN101952203A|2011-01-19|
MY158232A|2016-09-15|
AU2009215632B2|2013-11-28|
TWI432393B|2014-04-01|
RU2506227C2|2014-02-10|
WO2009105424A1|2009-08-27|
RU2010136669A|2012-03-27|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JPH0256237A|1988-02-08|1990-02-26|Bpb Ind Plc|Improvement of method and apparatus for calcination|
JP2007527838A|2004-02-27|2007-10-04|ユナイテッド・ステイツ・ジプサム・カンパニー|高効率非耐火ケトル|JP2015166077A|2014-02-17|2015-09-24|月島機械株式会社|Fluidized bed equipment|NL285104A|1961-11-13||||
DE1940007B2|1969-08-06|1973-06-07||Verfahren zum brennen von gips in einem heizgasstrom|
SU361556A3|1970-04-17|1972-12-07|||
FR2311764B1|1975-05-23|1980-07-11|Rhone Poulenc Ind||
GB2086874B|1980-11-10|1985-09-04|Bpb Industries Plc|Calcining calcium sulphate dihydrate|
GB2140702A|1980-11-10|1984-12-05|Bpb Industries Plc|Fluidised bed calcination|
US4569831A|1985-04-01|1986-02-11|Fuller Company|Process and apparatus for calcining gypsum|
CN87204243U|1987-05-21|1987-12-31|喻名祥|石膏粉流化床煅烧炉|
US5139749A|1990-06-22|1992-08-18|Tas, Inc.|Fluidized calcining process|
US5824273A|1995-06-23|1998-10-20|Mitsubishi Jukogyo Kabushiki Kaisha|Gas refining system|
US5743728A|1995-08-15|1998-04-28|Usg Corporation|Method and system for multi-stage calcining of gypsum to produce an anhydrite product|
US6491501B1|2000-09-01|2002-12-10|Moyno, Inc.|Progressing cavity pump system for transporting high-solids, high-viscosity, dewatered materials|
US6964704B2|2003-03-20|2005-11-15|G.B. Technologies, Llc|Calcium sulphate-based composition and methods of making same|
US7175426B2|2004-02-27|2007-02-13|United States Gypsum Company|High efficiency refractoryless kettle|
JP2006321663A|2005-05-17|2006-11-30|Tadano Ltd|半水石膏の製造装置及び半水石膏の連続的製造方法|
US7498014B2|2006-01-13|2009-03-03|Certainteed Gypsum, Inc.|System and method for the production of alpha type gypsum using heat recovery|
US7261772B1|2006-10-17|2007-08-28|Lyondell Chemical Technology, L.P.|Gypsum composition|EP2163532A1|2008-09-11|2010-03-17|Claudius Peters Technologies GmbH|Verfahren und Anlage zur Herstellung von Hartgips|
FR2944344B1|2009-04-10|2013-12-27|Inst Francais Du Petrole|Four tournant pour traitement thermique de materiaux solides|
US7897134B1|2009-08-07|2011-03-01|Alstom Technology Ltd|System and method for calcining gypsum|
US8523496B2|2010-02-10|2013-09-03|Kior, Inc.|Biomass feed system/process|
EP2641884A1|2012-03-21|2013-09-25|Greenmade Development Limited|Procédé de préparation de liants hydrauliques comprenant un mélange de clinker, ou de ciment, sulfo-alumineux et de sulfates de calcium|
US20140113241A1|2012-10-22|2014-04-24|United States Gypsum Company|Calcining kettle|
US9504983B2|2013-10-09|2016-11-29|Karlton D. Krause|System and method for converting biomass into fuel, oil and other useful products|
CA2977741A1|2015-02-25|2016-09-01|Yoshino Gypsum Co., Ltd.|Apparatus and method for calcination of gypsum|
CN205797218U|2016-07-12|2016-12-14|山东博瑞新材料科技有限公司|一种粉末固体反应器|
US10023496B1|2017-06-16|2018-07-17|United States Gypsum Company|No fiber calcination of gypsum for gypsum fiberboard|
法律状态:
2012-01-31| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120130 |
2012-01-31| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120130 |
2013-02-21| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130221 |
2013-04-03| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
2013-07-02| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130701 |
2013-10-31| TRDD| Decision of grant or rejection written|
2013-11-06| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
2013-12-05| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131113 |
2013-12-27| R150| Certificate of patent or registration of utility model|Free format text: JAPANESE INTERMEDIATE CODE: R150 |
2016-12-27| LAPS| Cancellation because of no payment of annual fees|
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]